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Abstract—In this paper, we design a set of multi-objective
constrained optimization problems (MCOPs) and propose a new
repair operator to address them. The proposed repair operator
is used to fix the solutions that violate the box constraints. More
specifically, it employs a reversed correction strategy that can
effectively avoid the population falling into local optimum. In
addition, we integrate the proposed repair operator into two
classical multi-objective evolutionary algorithms MOEA/D and
NSGA-II. The proposed repair operator is compared with other
two kinds of commonly used repair operators on benchmark
problems CTPs and MCOPs. The experiment results demon-
strate that our proposed approach is very effective in terms of
convergence and diversity.

Index Terms—Multi-objective Evolutionary Algorithm, Repair
Operator, Constrained Optimization.

I. INTRODUCTION

Multi-objective optimization problems (MOPs) consist of
more than one objectives, which are usually conflicting with
each other. In other words, improvements in one objective may
lead to the degradation of other objectives. It is impossible to
make all of the objectives to be optimal at the same time.
Instead, a set of solutions that represent the trade-off among
multiple objectives exist for MOPs. In addition, different types
of constraints are often unavoidable in MOPs. Such MOPs
with constraints are usually termed multi-objective constrained
optimization problem. Constraints can be roughly divided into
two categories, equality and inequality constraints. Without
loss of generality, a multi-objective constrained optimization
problem can be defined as follows:

minimize F (x) = (f1(x), . . . , fm(x)) (1)
subject to gi(x) ≥ 0, i = 1, . . . , q

subject to hj(x) = 0, j = 1, . . . , p

Where x = (x1, x2, . . . , xn) ⊂ Rn is n-dimensional design
variables,F (x) = (f1(x), f2(x), . . . , fm(x)) ⊂ Rm is m-

dimensional objective vector. gi(x) ≥ 0 define q inequality
constraints, hj(x) = 0 define p equality constraints.

The existing multi-objective constrained evolutionary algo-
rithms combine the multi-objective evolutionary algorithms
with the mechanisms of constraint handling [1]. At present,
NSGA-II [2] and MOEA/D [3] are the two classical multi-
objective evolutionary algorithms representing two categories
of fitness assignment methods, namely fitness assignment
based on domination and decomposition. In fitness assignment
based on domination, the fitness is decided by non-dominated
sorting and crowding distance. Representative algorithms us-
ing this type of fitness assignment method include MOGA
[4] , PAES-II [5] , SPEA-II [6] and NSGA-II [2]. In fitness
assignment based on decomposition, comparison and sorting
of individuals are made via aggregation function with weights
allocated specifically to all individuals. Typical algorithms of
this category include IMMOGLS [7], UGA [8] , cMOGA [9]
, MOGLS [10] , and MOEA/D [3].

The existing constraints handling mechanism can be divided
into four categories. They are feasibility maintenance, penalty
function, separation of constraint violation and objective value,
and multi-objective evolutionary algorithms (MOEAs). The
methods of feasibility maintenance are usually applied to the
discrete optimization problems, such as the job shop schedul-
ing problems and the vehicle routing problems. They either
design appropriate coding and decoding methods to ensure
that the individuals are feasible, or apply some mechanisms
to repair the infeasible individuals. Unlike the feasibility main-
tenance methods, the penalty function method is adding one
penalty term to the objective functions and transforming the
constrained optimization problem into an unconstrained one.
Typical methods of this category include segregated penalty
functions [17], death penalty functions [18], co-evolutionary
penalty functions [19] and adaptive penalty functions [20,21].
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Finding an ideal punishment factor is usually very difficult for
the penalty function method. The mechanism of separation of
constraint violation and objective value treats the objective
and constraints separately, and does not need any extra pa-
rameters. Typical methods of this category include stochastic
ranking (SR) [11], infeasible driven evolutionary algorithm
(IDEA) [12] and constraint dominate principle (CDP) [13].
The main feature of MOEAs is to transform a multi-objective
constrained optimization problem to another multi-objective
optimization problem with an additional objective, which
regards the constraint condition as another objective and uses
the existing MOEAs to optimize the transformed problem.
Typical methods of this category include COMOGA [14],
CW [15] and ATMES [16]. It is noteworthy that the penalty
function method needs to tune the punishment factor, and
the MOEAs method brings additional objective. In this paper,
CDP method is used to handle constraints, which requires no
additional parameters.

The remainder of the paper is organized as follows. Section
II designs a set of multi-objective constrained optimization
problems (MCOPs). Section III introduces the repair operator.
Section IV gives the experimental results of the CTP and
MCOP optimization problems, and Section V concludes the
paper.

II. DESIGN OF MCOPS

The existing multi-objective constrained optimization prob-
lems mainly consist of CTP [22,23] and CF[24]. CTP bench-
mark problems can be defined as follows:

minimize f1(x) = x1 (2)

minimize f2(x) = g(x)(1−
√
f1/g)

subject to C(x) ≡ cos(θ)(f2(x)− e)− sin(θ)f1(x) ≥
a|sin(bπ(sin(θ)(f2(x)− e) + cos(θ)f1(x))

c)|d

It is important to note that the problem can be made harder
by setting g(x) function with various local extreme. The
inequality constraint C(x) has six parameters (θ, a, b, c, d, e).
In fact, the above problem can be used as a constrained
test problem generator by tuning these six parameters. Deb
et al designed seven benchmark problems named CTP2-
CTP8 by setting those six parameters. The original CTP2-
CTP8 instances have only 2 decision variables and they are
easy to solve. Hence, we extend the CTP2-CTP8 problems
to ten decision variables and variable bounds are given by
0 ≤ xi ≤ 1, i = 1, . . . , 10 . The six constraint parameters are
the same as those used in [22].

According to the final report on CEC09 MOEA competition,
MOEA/D and NSGA-II are not quite suitable for solving
CF instances. Even though it is very easy to search feasible
solutions for CF, finding the true Pareto front turns out to
be very difficult. This paper mainly focuses on applying the
repair operators in the framework of MOEA/D and NSGA-
II. Because CF is not a suitable test suite for MOEA/D and
NSGA-II, we design a new set of multi-objective constrained
optimization problems (MCOPs) to validate the proposed

repair operator in the framework of MOEA/D and NSGA-
II. Unlike CTP2-CTP8 instances which have the same multi-
objectives and each problem has different constraint conditions
by selecting six different parameters, we design a set of
problems that have different multi-objectives but share the
same constraint conditions. In terms of objective functions,
we adopt ZDT test problems [28] and make some changes. In
addition, nine ellipses are established in the objective space
as the constraint conditions. The general form of constraint
conditions are as follows:

C(x) ≡ ((f1(x)− cx)cos(θ)− (f2(x)− cy)sin(θ))2/a2 (3)
+((f1(x)− cx)sin(θ) + (f2(x)− cy)cos(θ))2/b2 ≥ 1

The constraint C(x) has five parameters (θ, a, b, Cx, Cy),
which can be used to further adjust the difficulty levels of
the constraint conditions as needed. Among them θ denotes
the counterclockwise rotation angle of the ellipse. a and b
control the lengths of the long axis and minor axis of the
ellipse respectively. Cx and Cy are two vectors representing
the centers of the ellipses. For example, if we define the
following parameters:

cx = [0, 1, 0, 1, 2, 0, 1, 2] (4)
cy = [1.5, 0.5, 2.5, 1.5, 0.5, 3.5, 2.5, 1.5, 0.5]

a2 = 0.1, b2 = 0.2, θ = −0.25π

The distribution of constraining ellipses in the objective space
is shown in Figure 1.
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Fig. 1. The distribution of constraint functions.

Combining the constraint functions with objective func-
tions, we design seven multi-objective constraint optimization
problems, namely MCOP1-MCOP7. The objective functions
of them are listed in Table 1. It is noteworthy that we use
constraint dominate principle (CDP) method to handle the
constraints defined in formula (2) and formula (3), and use
repair operators to fix box constraint.
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TABLE I
OBJECTIVE FUNCTIONS OF MCOP1-MCOP7.

Function Name Function Definition

MCOP1 PF convex


minimize f1(x) = g(x)x1

minimize f2(x) = g(x)(1−
√
f1/g)

g(x) = 1 + 9
∑m

i=2
xi/(m− 1)

m = 30, xi ∈ [0, 1]

MCOP2 PF discrete


minimize f1(x) = g(x)x1
minimize f2(x) = g(x)(1− (f1/g)2)

g(x) = 1 + 9
∑m

i=2
xi/(m− 1)

m = 30, xi ∈ [0, 1]

MCOP3 PF discrete


minimize f1(x) = x1

minimize f2(x) = g(x)(1−
√
f1/g)

−f1sin(10πf1)
g(x) = 1 + 9(

∑m

i=2
xi

m−1
)0.25

m = 10, xi ∈ [0, 1]

MCOP4 PF convex


minimize f1(x) = g(x)x1

minimize f2(x) = g(x)(1−
√
f1/g)

g(x) = 1 + 10(m− 1)

+
∑m

i=2
(x2i − 10cos(4πxi))

m = 10, xi ∈ [0, 1]

MCOP5 PF discrete


minimize f1(x) = g(x)x1
minimize f2(x) = g(x)(1− (f1/g)2)

g(x) = 1 + 10(m− 1)

+
∑m

i=2
(x2i − 10cos(4πxi))

m = 10, xi ∈ [0, 1]

MCOP6 PF discrete


minimize f1(x) = 1− exp(−4x1)sin6(6πx1)

minimize f2(x) = g(x)(1− (f1/g)2)

g(x) = 1 + 10(m− 1)

+
∑m

i=2
(x2i − 10cos(4πxi))

m = 10, xi ∈ [0, 1]

MCOP7 PF convex


minimize f1(x) = 1− exp(−4x1)sin6(6πx1)

minimize f2(x) = g(x)(1−
√
f1/g)

g(x) = 1 + 10(m− 1)

+
∑m

i=2
(x2i − 10cos(4πxi))

m = 10, xi ∈ [0, 1]

III. REPAIR OPERATOR

Repair operators are used to fix the infeasible solutions
that violate the box constraints. A lot of research concen-
trates on repairing the infeasible solutions for discrete multi-
objective constrained optimization problems. However, very
few researchers have paid attention to the repair operators for
continuous multi-objective constrained optimization problems.
In fact, there are very large proportion of infeasible solutions
which violate the box-constraint during the differential evolu-
tionary process. Fixing the infeasible solutions properly will
significantly help multi-objective evolutionary algorithms to
find the ideal Pareto front. At present, there are two commonly
used repair operators. One of the most commonly used repair
operator can be defined as follows:

xi,j =

{
Lj , if xi,j < Lj

Uj , if xi,j > Uj

(5)

Where xi,j represents the value of j-th component of indi-
vidual i. Lj denotes the lower bound of j-th component of
the decision variables. Uj denotes the upper bound of j-th

component of the decision variables. Another commonly used
repair operator proposed by Wang etc. [26] can be defined as
follows:

xi,j =

{
min{Uj , 2Lj − xi,j}, if xi,j < Lj

max{Lj , 2Uj − xi,j}, if xi,j > Lj

(6)

In order to facilitate discussion, we denote the formula (5)
and formula (6) as Repair-A and Repair-B respectively. In this
paper, we propose an opposition-based repair operator denoted
as Repair-C. The formula of our proposed repair operator can
be defined as follows:

xi,j =

{
Uj , if xi,j < Lj

Lj , if xi,j > Uj

(7)

This repair operator is inspired in part by the concept of
opposition-based learning (OBL)[29]. The main idea of OBL
is, for finding a better candidate solution, simultaneous consid-
eration of an estimate and its corresponding opposite estimate
has a potential to help search towards the global optimum in
a more efficient way, due to an arguably better preservation
of diversity in the searching population. For example, the
differential evolution process can be defined as follows:

x′i,j = xi,j + F (xr1,j − xr2,j) (8)

Where r1 and r2 are two unequal random integers and not
equal to i. Fdenotes the factor of differential evolution, here
we set F = 0.5. If x′i,j is less than its lower bound Lj , it
can be inferred that xi,j has a higher probability of getting
a value close to its lower bound Lj . In this case if we
fix x′i,j to its upper bound Uj , which can be approximately
considered as an opposite estimate of xi,j , then this operator
has a potential to increase the diversity of the population
according to the philosophy of OBL. Even though this choice
is a bit counterintuitive because normally people think fixing
x′i,j to its lower bound Lj is a better choice, but we shall also
not ignore the possibility that fixing x′i,j to its lower bound ,
which is a value with a lot loss of potential after many previous
search attempts, the search may have a higher likelihood to be
stuck in local minima. To verify this hypothesis, we conduct a
lot of experiments which are described in detail in the Section
of Experimental Study.

IV. EXPERIMENTAL STUDY

A. Experimental Settings

In order to evaluate the performance of repair operators
mentioned in section 3, we combined these three repair
operators with NSGA-II and MOEA/D and then studied the
experimental results on CTP2-CTP8 and MCOP1-MCOP7.
Thirty independent runs with the six algorithms are conducted.
The detailed parameter settings of these six algorithms are
summarized as follows.

1) Setting for reproduction operators: The mutation proba-
bility Pm = 1/n (n is the number of decision variables) and
its distribution index is set to be 20. For the DE operator, we
set CR = 1.0 and F = 0.5 as recommended in [27].
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2) Population size: N = 200.
3) Number of runs and stopping condition: Each algorithm

runs 30 times independently on each test problems. The
algorithm stops until 500 000 function evaluations.

4) Neighborhood size: T = 20.
5) Probability use to select in the neighborhood: δ = 0.9.
6) The maximal number of solutions replaced by a child:

nr = 2.

B. Performance Metric

In this work, performance of a constrained multi-objective
evolutionary algorithm is evaluated in two aspects conver-
gence and distribution. Convergence describes the closeness of
the obtained Pareto front to the true Pareto front. Distribution
on the other hand depicts how the solutions in the obtained
Pareto are distributed. We select two metrics - inverted gener-
ation distance (IGD)[30] and hypervolume (HV)[31]. Detailed
definitions of them are given as follows:

Inverted Generational Distance (IGD):Let p∗ is the ideal
Pareto front set, A is an approximate Pareto front set achieved
by evolutionary multi-objective algorithm. IGD metric denotes
the distance between p∗ and A. It is defined as follows:

IGD(P∗, A) =
∑

y∗∈P∗
d(y∗,A)

‖P∗‖

d(y∗, A) = miny∈A{
√∑m

i=1(yi ∗ −yi)2}

(9)

Hypervolume (HV ):HV simultaneously considers the distri-
bution of the obtained Pareto front A and its vicinity to the
true Pareto front. HV is defined as the volume enclosed by A
and the reference vector r = (r1, . . . , rm). HV can be defined
as:

HV (P ) = voli∈P (i) (10)

Here, vol(i) represents the volume enclosed by solution i ∈
A and the reference vector r. The maximum value of each
objective in the ideal Pareto front set gives the value of each
dimension of the reference point r , and thus constructs the
reference point.

C. Experimental Result

In order to demonstrate the effectiveness of the proposed
repair operator, we first compared it with the other two repair
operators Operator-A and Operator-B (discussed in section III)
in the framework of MOEA/D on CTP2-CTP8 and MCOP1-
MCOP7 problems. The final populations with the best hyper-
volume metric in 30 independent runs with the three repair
operators are shown in Figure 2.

From Figure 2, it is clear that MOEA/D-Repair-C has
obtained best Pareto fronts on CTP3, CTP7, MCOP5, MCOP6
and MCOP7. For CTP2, CTP5 and MCOP4, MOEA/D-
Repair-A and MOEA/D-Repair-C have a similar Pareto front,
which is better than the Pareto front obtained by MOEA/D-
Repair-B. MOEA/D-Repair-B and MOEA/D-Repair-C have a
better Pareto front than MOEA/D-Repair-A on CTP4. For
CTP6, CTP8, MCOP1, MCOP2 and MCOP3, the three meth-
ods have similar Pareto fronts. Overall MOEA/D-Repair-C
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Fig. 2. The final populations with the best hypervolume metric in 30
independent runs



                                                                                                                                          334

TABLE II
IGD VALUES OF MOEA/D-REPAIR-A, MOEA/D-REPAIR-B AND MOEA/D-REPAIR-C.

Instance MOEA/D-Repiar-A MOEA/D-Repair-B MOEA/D-Repair-C
– Mean Std. Mean Std. Mean Std.

CTP2 6.81E-02 3.86E-02 1.46E-01 7.84E-02 1.70E-04 3.15E-06
CTP3 1.63E-01 9.45E-02 3.37E-01 1.71E-01 1.40E-03 1.71E-04
CTP4 4.68E-01 2.21E-01 5.88E-01 4.67E-01 4.41E-02 2.83E-02
CTP5 8.08E-02 3.70E-02 1.38E-01 9.20E-02 6.85E-03 3.88E-03
CTP6 1.29E-02 9.65E-03 1.28E-01 7.51E-02 5.04E-04 1.99E-05
CTP7 1.17E-01 4.86E-02 1.58E-01 7.13E-02 1.39E-04 2.77E-07
CTP8 3.77E-02 5.80E-02 2.72E-01 1.06E-01 1.12E-03 1.32E-04

MCOP1 2.39E-04 2.33E-06 2.40E-04 3.84E-06 2.37E-04 3.68E-06
MCOP2 2.56E-04 1.47E-07 2.56E-04 1.71E-07 2.56E-04 4.65E-07
MCOP3 2.71E-04 4.94E-07 2.71E-04 1.82E-06 2.71E-04 3.03E-06
MCOP4 8.96E-02 3.01E-02 1.21E-01 2.85E-02 1.55E-02 1.62E-02
MCOP5 1.67E-01 6.14E-02 2.88E-01 9.92E-02 3.27E-02 3.49E-02
MCOP6 1.03E-01 2.05E-02 1.23E-01 2.47E-02 2.89E-02 2.08E-02
MCOP7 1.09E-01 3.09E-02 1.28E-01 3.80E-02 4.63E-02 1.60E-02

TABLE III
WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL VALUES

OF IGD AMONG MOEA/D-REPAIR-A, MOEA/D-REPAIR-B AND
MOEA/D-REPAIR-C.

Instance Repair-C vs Repair-A Repair-C vs Repair-B
– h-value p-value h-value p-value.

CTP2 1.00E+00 4.98E-11 1.00E+00 3.02E-11
CTP3 1.00E+00 3.02E-11 1.00E+00 3.02E-11
CTP4 1.00E+00 4.98E-11 1.00E+00 1.86E-09
CTP5 1.00E+00 5.07E-10 1.00E+00 3.02E-11
CTP6 1.00E+00 1.07E-07 1.00E+00 3.96E-09
CTP7 1.00E+00 3.02E-11 1.00E+00 3.02E-11
CTP8 1.00E+00 6.20E-04 1.00E+00 2.94E-08

MCOP1 0.00E+00 8.50E-02 1.00E+00 1.25E-04
MCOP2 0.00E+00 9.63E-02 0.00E+00 9.05E-02
MCOP3 0.00E+00 1.45E-01 0.00E+00 2.84E-01
MCOP4 1.00E+00 8.10E-10 1.00E+00 3.02E-11
MCOP5 1.00E+00 2.23E-09 1.00E+00 3.02E-11
MCOP6 1.00E+00 8.99E-11 1.00E+00 3.69E-11
MCOP7 1.00E+00 1.52E-09 1.00E+00 5.49E-11

outperforms or is at least competitive with MOEA/D-Repair-A
and MOEA/D-Repair-B in all test cases.

Table II presents the average values of IGD over 30 in-
dependent runs in the framework of MOEA/D with three
repair operators described in section III. Table III presents the
Wilcoxon’s rank sum test values of IGD among these three
different repair operators at a 0.05 significance level. It can
be observed that MOEA/D-Repair-C performs significantly
better than other two methods on all the instances except for
MCOP1, MCOP2 and MCOP3, and almost the same as the
other two kinds of repair operators on MCOP1, MCOP2 and
MCOP3 (with slightly bigger standard deviation). The main
cause is that MCOP1, MCOP2 and MCOP3 are relatively
easy to solve that these three different repair operators can
not reflect differences on them.

Table IV presents the average values of HV over 30
independent runs in the framework of MOEA/D. Table V
presents the Wilcoxon’s rank sum test values of HV among
these three repair operators. From Table IV and Table V,
it can be observed that MOEA/D-Repair-C also performs
significantly better than the other two kinds of methods on all
the instances except for MCOP1, MCOP2 and MCOP3, which
means that our proposed repair operator can effectively avoid

TABLE V
WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL VALUES

OF HV AMONG MOEA/D-REPAIR-A, MOEA/D-REPAIR-B AND
MOEA/D-REPAIR-C.

Instance Repair-C vs Repair-A Repair-C vs Repair-B
– h-value p-value h-value p-value.

CTP2 1.00E+00 1.11E-10 1.00E+00 2.37E-12
CTP3 1.00E+00 9.40E-12 1.00E+00 1.21E-12
CTP4 1.00E+00 4.60E-12 1.00E+00 9.04E-10
CTP5 1.00E+00 7.82E-10 1.00E+00 5.91E-10
CTP6 1.00E+00 1.07E-07 1.00E+00 3.96E-09
CTP7 1.00E+00 5.22E-12 1.00E+00 2.37E-12
CTP8 1.00E+00 1.95E-03 1.00E+00 2.94E-08

MCOP1 1.00E+00 3.02E-11 1.00E+00 3.02E-11
MCOP2 1.00E+00 3.02E-11 1.00E+00 2.15E-10
MCOP3 1.00E+00 3.02E-11 1.00E+00 4.50E-11
MCOP4 1.00E+00 5.58E-10 1.00E+00 2.37E-12
MCOP5 1.00E+00 8.78E-09 1.00E+00 5.77E-11
MCOP6 1.00E+00 5.77E-11 1.00E+00 5.77E-11
MCOP7 1.00E+00 4.19E-02 1.00E+00 4.19E-02

TABLE VII
WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL VALUES

OF IGD AMONG NSGAII-REPAIR-A, NSGAII-REPAIR-B AND
NSGAII-REPAIR-C.

Instance Repair-C vs Repair-A Repair-C vs Repair-B
– h-value p-value h-value p-value.

CTP2 1.00E+00 6.01E-08 1.00E+00 3.02E-11
CTP3 1.00E+00 2.15E-10 1.00E+00 3.02E-11
CTP4 1.00E+00 5.00E-09 1.00E+00 5.49E-11
CTP5 1.00E+00 4.98E-11 1.00E+00 4.08E-11
CTP6 1.00E+00 4.08E-11 1.00E+00 6.70E-11
CTP7 1.00E+00 8.99E-11 1.00E+00 3.02E-11
CTP8 1.00E+00 4.18E-09 1.00E+00 1.25E-07

MCOP1 1.00E+00 3.18E-03 1.00E+00 2.60E-05
MCOP2 1.00E+00 2.38E-03 1.00E+00 6.57E-02
MCOP3 1.00E+00 1.96E-10 1.00E+00 4.80E-07
MCOP4 1.00E+00 3.02E-11 1.00E+00 3.02E-11
MCOP5 1.00E+00 1.21E-10 1.00E+00 3.02E-11
MCOP6 1.00E+00 1.86E-09 1.00E+00 3.02E-11
MCOP7 1.00E+00 1.96E-10 1.00E+00 3.02E-11

the population falling into local optimum in the framework
of MOEA/D. For MCOP1, MCOP2 and MCOP3, the three
methods obtain almost the same hypervolume(HV) results.

From Table VI and and Table VII, It can be observed the
similar results obtained in the framework of MOEA/D. NSGA-
II-Repair-C performs better than other two algorithms NSAG-
II-Repair-A and NSGA-II-Repair-B in terms of IGD metric on
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TABLE IV
HV VALUES OF MOEA/D-REPAIR-A, MOEA/D-REPAIR-B AND MOEA/D-REPAIR-C.

Instance MOEA/D-Repiar-A MOEA/D-Repair-B MOEA/D-Repair-C
– Mean Std. Mean Std. Mean Std.

CTP2 5.00E-02 1.02E-01 9.76E-03 3.71E-02 4.77E-01 9.83E-05
CTP3 3.83E-02 6.45E-02 0.00E+00 0.00E+00 4.45E-01 1.90E-03
CTP4 8.43E-03 3.21E-02 3.84E-02 8.43E-02 3.08E-01 8.97E-02
CTP5 2.16E-02 7.48E-02 1.83E-02 4.75E-02 2.52E-01 1.03E-01
CTP6 4.04E-01 8.34E-02 1.14E-01 1.89E-01 4.99E-01 2.21E-04
CTP7 2.43E-03 5.53E-03 9.74E-04 3.71E-03 5.46E-01 2.56E-05
CTP8 3.08E-01 1.40E-01 5.59E-02 1.46E-01 4.41E-01 4.72E-04

MCOP1 6.64E-01 1.78E-05 6.64E-01 2.05E-05 6.64E-01 6.06E-05
MCOP2 2.21E-01 8.54E-06 2.21E-01 1.50E-05 2.21E-01 4.60E-05
MCOP3 5.16E-01 3.43E-06 5.15E-01 2.23E-05 5.15E-01 2.98E-05
MCOP4 3.37E-02 1.22E-01 2.53E-04 9.64E-04 4.93E-01 1.70E-01
MCOP5 3.55E-03 1.40E-02 0.00E+00 0.00E+00 1.14E-01 1.09E-01
MCOP6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.90E-02 1.02E-01
MCOP7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.22E-02 1.20E-01

TABLE VI
IGD VALUES OF NSGA-II-REPAIR-A, NSGA-II-REPAIR-B AND NSGA-II-REPAIR-C.

Instance NSGA-II-Repair-A NSGA-II-Repair-B NSGA-II-Repair-C
– Mean Std. Mean Std. Mean Std.

CTP2 4.66E-02 3.23E-02 1.17E-01 6.41E-02 1.13E-04 4.49E-05
CTP3 1.03E-01 6.32E-02 3.12E-01 1.45E-01 2.95E-03 9.83E-04
CTP4 2.90E-01 1.67E-01 6.18E-01 3.26E-01 7.46E-02 2.32E-02
CTP5 6.14E-02 2.32E-02 1.12E-01 5.13E-02 1.01E-02 4.84E-03
CTP6 1.08E-02 7.22E-03 8.48E-02 7.72E-02 3.02E-04 1.16E-04
CTP7 7.86E-02 4.44E-02 1.61E-01 8.43E-02 5.25E-05 1.54E-06
CTP8 1.98E-02 9.15E-03 1.61E-01 1.47E-01 5.05E-04 8.50E-05

MCOP1 2.74E-04 1.83E-05 4.52E-04 4.21E-05 7.20E-03 1.61E-02
MCOP2 1.07E-02 2.04E-02 1.60E-02 1.05E-02 2.56E-02 2.14E-02
MCOP3 1.18E-04 4.38E-06 2.57E-04 4.12E-05 1.45E-02 1.80E-02
MCOP4 1.01E-01 3.14E-02 1.36E-01 6.00E-02 2.72E-04 1.75E-05
MCOP5 2.27E-01 8.64E-02 3.36E-01 1.05E-01 1.83E-04 1.54E-05
MCOP6 1.02E-01 4.07E-02 1.57E-01 5.35E-02 4.31E-05 1.03E-05
MCOP7 1.13E-01 3.51E-02 1.70E-01 4.87E-02 9.72E-05 1.92E-05

TABLE VIII
HV VALUES OF NSGA-II-REPAIR-A, NSGA-II-REPAIR-B AND NSGA-II-REPAIR-C.

Instance NSGA-II-Repiar-A NSGA-II-Repair-B NSGA-II-Repair-C
– Mean Std. Mean Std. Mean Std.

CTP2 1.01E-01 1.45E-01 2.42E-02 5.49E-02 4.77E-01 5.21E-04
CTP3 7.15E-02 9.84E-02 9.47E-03 3.61E-02 4.31E-01 9.21E-03
CTP4 4.51E-02 7.97E-02 8.42E-03 3.21E-02 1.50E-01 5.88E-02
CTP5 2.29E-02 5.21E-02 1.37E-02 4.19E-02 1.54E-01 6.62E-02
CTP6 4.24E-01 6.14E-02 1.82E-01 2.02E-01 5.00E-01 8.20E-04
CTP7 4.14E-02 1.38E-01 1.97E-02 9.96E-02 5.47E-01 4.14E-05
CTP8 3.63E-01 3.61E-02 1.80E-01 1.94E-01 4.44E-01 2.12E-04

MCOP1 6.64E-01 5.97E-05 6.59E-01 6.29E-04 5.85E-01 1.78E-01
MCOP2 1.92E-01 3.45E-02 1.27E-01 5.24E-02 8.03E-02 8.81E-02
MCOP3 5.17E-01 2.29E-05 5.10E-01 1.57E-03 3.15E-01 2.08E-01
MCOP4 8.14E-03 1.21E-02 1.15E-02 4.91E-02 6.64E-01 1.91E-04
MCOP5 7.38E-03 4.04E-02 0.00E+00 0.00E+00 2.21E-01 4.78E-05
MCOP6 2.38E-02 7.26E-02 0.00E+00 0.00E+00 2.38E-01 1.55E-05
MCOP7 1.83E-02 1.00E-01 0.00E+00 0.00E+00 5.48E-01 1.86E-04

all the instances except for MCOP1, MCOP2 and MCOP3.

Table VIII presents the average values of HV over 30
independent runs in the framework of NSGA-II. Table IX
presents the Wilcoxon’s rank sum test values of HV among
three repair operators at a 0.05 significance level. From Table
VIII and Table IX, it can be observed that NSGA-II-Repair-C
performs significantly better than other two kinds of methods
on all the instances except for MCOP1, MCOP2 and MCOP3.
For MCOP1, MCOP2 and MCOP3, the three methods obtain
almost the same results. It can be therefore concluded that the

proposed repair operator can also work well in the framework
of NSGA-II.

V. CONCLUSION

This paper proposes a new repair operator which employs a
reversed correction strategy to fix the solutions that violate
the box-constraint. In order to validate its performance on
convergence and diversity, a new set of constrained multi-
objective optimization problems is designed, to complement
the well-known CTP test suite. Experimental results show
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TABLE IX
WILCOXON’S RANK SUM TEST AT A 0.05 SIGNIFICANCE LEVEL VALUES

OF HV AMONG NSGAII-REPAIR-A, NSGAII-REPAIR-B AND
NSGAII-REPAIR-C.

Instance Repair-C vs Repair-A Repair-C vs Repair-B
– h-value p-value h-value p-value.

CTP2 1.00E+00 6.28E-08 1.00E+00 5.22E-12
CTP3 1.00E+00 1.33E-10 1.00E+00 2.37E-12
CTP4 1.00E+00 1.05E-07 1.00E+00 2.47E-10
CTP5 1.00E+00 5.83E-10 1.00E+00 1.59E-10
CTP6 1.00E+00 4.50E-11 1.00E+00 3.41E-11
CTP7 1.00E+00 4.31E-10 1.00E+00 4.11E-12
CTP8 1.00E+00 5.46E-09 1.00E+00 1.16E-10

MCOP1 1.00E+00 1.61E-10 1.00E+00 3.37E-05
MCOP2 1.00E+00 1.19E-06 1.00E+00 1.84E-02
MCOP3 1.00E+00 8.94E-11 1.00E+00 3.24E-07
MCOP4 1.00E+00 1.27E-11 1.00E+00 7.88E-12
MCOP5 1.00E+00 7.31E-12 1.00E+00 1.21E-12
MCOP6 1.00E+00 1.05E-09 1.00E+00 1.21E-12
MCOP7 1.00E+00 4.56E-11 1.00E+00 1.21E-12

that the proposed repair operator outperforms the other repair
operators in terms of both convergence and diversity. The
future work includes combining the proposed repair operator
with other state-of-the-art algorithms to further validate the
repair operator and improve the performance of the algorithms,
and testing them in real-world applications.
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